Proceedings of the International Conference , “Computational Systems and Communication Technology”

5TH MAY 2010 - by Einstein College of Engineering,

Tirunelveli-Tamil Nadu,PIN-627 012,INDIA

A Router Based Algorithm for Distributed Denial of Service Attack
X. Birla1, S.M. Mohaideen Abdul Kadhar2, N. Narayanan Prasanth3, S.P. Raja4, K. Rajasekaran5
1&4PG Scholar, Manonmaniam Sundaranar University, Tirunelveli, Tamlnadu, India

2Associate Professor, National College of Engineering, Tirunelveli, Tamilnadu, India

3&5Assistant Professor, National College of Engineering, Tirunelveli, Tamilnadu, India

1xavierbirla@gmail.com, +91 9659834360
Abstract— DDoS attack is a sophisticated attack created by a large number of hosts that are instructed to send useless packets to jam a victim server. The main objective of our project is to develop a network architecture and algorithm for countering DDoS attacks directed at a server in a network. To control this attack a proactive approach called throttle algorithm is implemented. A pre-analyser is to be developed to measure the flow of traffic load to the server or receiver. Implementation of the throttle algorithm in the router which is initiated and controlled by the server. This proposed system contains a throttle algorithm present at the router. Whenever the load increases or decreases over a specified level then the server sends throttle signals to the controller to control the flow of packets. A good user (G) is set to send the request in a predetermined load. The throttle then drops the packets that are sent by the DDoS attacker hosts when the server load reaches its operational level then the throttle stops its action and keeps forwarding the packets at that level until it again gets signal from the server.

Keywords— DDoS Attacks, Throttle Algorithm, Network Security
I. Introduction

DDoS attack is a sophisticated attack created by a large number of hosts that are instructed to send useless packets to jam a victim server. A denial of service is one of the web threats & it will prevent the server’s services to the clients.

The main objective of our project is to develop a network architecture and algorithm for countering DDoS attacks directed at an server in a network. Our work targets a network architecture and accompanying algorithms for countering distributed denial-of-service (DDoS) attacks directed at an Internet server. The basic mechanism is for a server under stress to install a router throttle at selected upstream routers. The throttle can be the leaky-bucket rate at which a router can forward packets destined for the server. Hence, before aggressive packets can converge to overwhelm the server, participating routers proactively regulate the contributing packet rates to more moderate levels, thus forestalling an impending attack.
In allocating the server capacity among the routers, we propose a notion of level-k max-min fairness. We first present a control-theoretic model to evaluate algorithm convergence under a variety of system parameters. In addition, we present packet network simulation results using a realistic global network topology, and various models of good user and attacker distributions and behavior. Using a generator model of web requests parameterized by empirical data, we also evaluate the impact of throttling in protecting user access to a web server. First, for aggressive attackers, the throttle mechanism is highly effective in preferentially dropping attacker traffic over good user traffic. This proposed system contains a throttle algorithm present at the router. Whenever the load increases over a specified level the server sends throttle signals to the controller to control the flow of packets. The throttle then drops the packets that are sent by the DDoS attacker hosts.
II. modules
There are four modules are present in this process. They are Pre-analyser, DOS attacker, Initiate server and controller. Pre-analyser analyses the maximum and minimum load, which a server can receive without exhausting. DOS attacker is a malicious attacker who sends unwanted traffic to a server. Initiative server that send signal to initiate the throttle to be affected. Controller implements the Throttle Algorithm.

III. DDoS Attacks
 DDoS attacks can be classified as logic attacks and resource exhaustion flooding attacks .Logic attacks exploit security vulnerabilities to cause a server or service to crash or significantly reduce performance. Resource exhaustion flooding attacks cause the server’s or network’s resources to be consumed to the point where the service is no longer responding or the response is significantly reduced.

Logic attacks will be evaluated based on their effect on the network infrastructure and critical network services (DNS, BGP, RADIUS, etc). Flooding attacks can be evaluated by their amplification factor. The amplification factoris the amount each source packet is multiplied by before reaching the victim. For example, in a direct flooding attack, for each source packet transmitted by the attacker, one packet is received at the victim’s site.

In a smurf reflective attack, each packet is reflected off a set of hosts that send multiple packets to the victim site. A smurf attack can achieve an amplification factor in the hundreds. In other words, for each source attack packet sent, hundreds of packets are received by the victim. The duration between a publicly announced vulnerability to the time that an exploit is released in the wild is decreasing.
IV. working principle
Throttle Algorithm consist of Minimum Work Load (L) and Maximum Work Load (U) which is set by the pre-analyser. If the load increases above the value U then the server sends the throttle enable signal to the controller.
[image: image1.emf]Server

Client

Client

Client

Attacker

Throttle

MIN

MIN

MAX

MIN

Working

Working

Access

Denied

Fig 1: Working Principle
 Fig. 1 shows the working principle of the algorithm. The throttle gets enabled to drop the packets sent by the attacker & the access is denied. If the load decreases below the value U then the server sends the disable signal to the controller so that the throttle stops its action and keeps forwarding packets at the same rate until it gets signal from the server. Server loads to below its design limit, so that the server can remain operational during a DDoS attack. Moreover, our implementation results show that throttling has low computation and memory overheads at a deployment router.
IV. THROTTLE ALGORITHM
A. Baseline Algorithm

 A baseline algorithm is presented in which each router throttles traffic for by forwarding only a fraction () of the traffic. The fraction is taken to be one when no throttle for is in effect. In adjusting according to current server congestion, the algorithm mimics TCP congestion control. Specifically, is reduced by a multiplicative factor when’s congested and sends the router a rate reduction signal. It is increased by an additive constant – subject to the condition that – when has extra capacity and sends the router a rate increase signal. The baseline algorithm that runs is specified in Fig. 2. It is to be invoked when either (i) the current server load (measured as traffic arrival rate to) crosses, or (ii) a throttle is in effect .And the current server load drops below . In case (i), multicasts a rate reduction signal to ; in case (ii), it multicasts a rate increase signal. The algorithm can take multiple rounds until a server load within is achieved. Also, if the server load is below, and the next rate increase signal raises the server load by an insignificant amount (i.e., by less than), we remove the throttle. The monitoring window should be set to be somewhat larger than the maximum round trip time between and a router in .In the example network topology Fig., let the number above each host (except) denote the current rate at which the hosts ends traffic to .

[image: image2.png]Plast
while (1)

‘monitor traffic arival ate fo time window ;
(s> Us) /+ throtele not strong enough +/
/+ gurther restrict throttle rate +/
mulicas redueton signal to F(k)
elif (p < Ls) /* throttle too strong*/
(o~ prasg <)
remove rate throtle from R(K);
break;
cse
/* try relaxing throttle at the routers *,
mulficast inercase signal to R(F);
s
dse
break;

end while;

Fig 2: Throttle Algorithm
 The number above each router denotes the offered rate of traffic at the router, destined for. Also, let, and. Initially, the total offered load to exceeds, and hence the baseline throttle algorithm is invoked at. A rate reduction signal causes each outer to drop half of the traffic.

V. Process
 All traffic rate and server load quantities stated in this paper are in units of kb/s, unless otherwise stated. We model a network as a connected graph, where the set of nodes is and is the set of edges. All leaf nodes are hosts and thus can be a traffic source. Hosts are not trusted. In particular, they may spoof traffic, disobey congestion signals, initiate bogus network requests, etc.
 An internal node is a router; a router cannot generate traffic, but can forward traffic received from its connected hosts or peer routers. We denote by the set off internal routing nodes. All routers are assumed to be trusted. The set of hosts, is partitioned into the set of ordinary” good” users, , and the set of attackers. Models network links, which are assumed to be bi-directional. Since our goal is to investigate control against server resource overload, each link is assumed to have infinite bandwidth. The assumption can be relaxed if the control algorithm is also deployed to protect routers from overload.

 In our control architecture, routers do not exchange control information between each other beyond passing on throttle requests (unlike, for example, traditional routing). This greatly simplifies the runtime overhead of our solution. Rather, the target server makes all control decisions and then instructs the deployment routers to implement the decisions accordingly. In our study, we designate a leaf node in as the target server. A good user sends packets to at some rate chosen from the range. An attacker sends packets to at some rate chosen from the range. In principle, while can usually be set-to a reasonable level according to how users normally access the service at (and we assume), it is hard to prescribe constraints on the choice of. In this work, we target in particular the kind of attack in which is significantly higher than (although we will also examine system performance when such a condition is not true).

 This is because if every attacker send sat a rate comparable to a good user, then an attacker must recruit or compromise a large number of hosts to launch an attack with sufficient traffic volume. When is under attack, it initiates the throttle defense mechanism outlined in Section I. The throttle does not have to be deployed at every router in the network. Instead, the deployment points are parameterized by a positive integer and are given by. Specifically, contains all the routers that are either hops away from or less than hops away from but are directly connected to a host.

[image: image3.png]

Fig. 3: An example network topology
 In Fig. 3, a square node represents a host, while a round node represents a router. The host on the far left is the target server. The routers in are shaded in the figure. Notice that the bottom-most routers in is only two hops away from, but is included because it is directly connected to a host.
[image: image4.emf]Throttle

algorithm

Throttle

algorithm

Access

denied

traffic

Figure 4: System Model

 Fig. 4 shows the proposed system model, an important research problem is how to achieve fair rate allocation of the server capacity among the routers in. To that end, we define the following notion of level- max-min fairness: Definition 1 (Level- Max-Min Fairness): A resource control algorithm achieves level- max-min fairness among the routers, if the allowed forwarding rate of traffic for a teach router is the router’s max-min fair share of some rate satisfying.
VI. Experiments
In this paper, the throttle algorithm for preventing the DDos attack is implemented. The Fig. 5-17 shows the results.
[image: image5.png]Server

Message:

=1oix]

<1

D

Select Throttle Packet Size!

100

Close

Figure 5: Server Window

[image: image6.png]RedundancyCheck

Thottle

view || |>|| pewete || ciose

Figure 6: Controller Window

[image: image7.png]Users

Enter Receiver Name

I

ChooseFile || send
Close
© assail ® Normal

=101x]

Figure 7: User Window

[image: image8.png]=101 x|

Enter Receiver Name

192.168.1.57

ChooseFile || Send

Close

© Assail ® Normal

T SSSSSS—

Lookin: |3 Server ~| (=[] [=] [El=
[} Capture.class [} StartCapture.class
) Receiver.class [} ThrottieEnabler.class

[} Redundantanalyzer.class
) ServerMode$1.class

[) ServerMode.class

[ServerModejava

[servernro.properties

File Name: [Serverbode java

All Files -

Files of Type

Open cancel

Figure 8: User Choosing the File

[image: image9.png]EETEE—— el

Enter Receiver Name: Jeatch(nterruptedException ie)
192168157 e printStackTrace();
ChooseFile
Close | 17227 etByteLength();

current_load = |
© Assail ® Normal th_en checklog
endhtulticastsignal);

iibytelengihi=madoading

g
ocket soc=new Socket(netaddress gstByName(contioler), 7501);

Figure 9: User Sending the File to the Server

[image: image10.png]=10ix]

View

Delete

Close

RedundancyCheck

Figure 10: No Throttle Signal since the Load is Minimum

[image: image11.png]Server

Messages.

=lolx|

fmportjava net Socket;
importjava net ServerSockst;
importjava net Inetéddress;
importjava.net DatagramPacke,
importjava net MulicastSocket,

importjpcap.”;

importjava io I0Exception;
importjava.io EOFException;
importjava o Printfiter,
importjava.io RandomAccessFile;
importjava o BuffsredReaer;
importjava o InputStreamReaer;
importjava o Filelnputstream;
importjava.o Objectinpuistream;

importjava.io.ObjectoutputStream;

il

Select Throttle Packet Size!

100

Close

Figure 11: Server Receiving the File

[image: image12.png][cues =101

Enter Receiver Name

192.168.1.57

Crovsorie | _soms

Senverbiode smobj=null
RandomaccessFile randomenull
Hashhap hm=new HashMap();

public Redundanténalyzer(Servertiode smob)

oo M Lookin: | sampies == E
® Assail) Normal

) appletsampgava [itormava [swinjava

[britestiava [loguingiava) wriconnjava

[capture.ava [pinggava [victmgava

[causeiava [rutejava

[chartjava [simpleava

[gctentzjava 1) socketudpEchontava

[qurecenerjava [StarControljava

File Name: simple.java

Files of Type: (Al Files -
open || cancer

Figure 12: User Choosing The File To Redundantly Send To Attack The Server

[image: image13.png]EETEE—— el

Enter Receiver Name Servenode smobj=nul;
RandomAccessFile randomi=nl
re2168.157 :
Hashiap hrm=new Hashiap();
ChooseFile || Send
public RedundantAnalyzer(Serverhode smobj)
Close | 17227 { System.outprintin{'inside cons"
this.smobj=smobj;
100 ~)
® © Normal public void rung

(
whileue)
«
ifsmobiv size(l=0)
[

Figure 13: User Attacking the Server by Sending Redundant Files

[image: image14.png]e
Redundancycheck]

view || |~|| Detetel || ciose

Figure 14: Throttle Enable Signal since the Load is Maximum

[image: image15.png]=1oix

o, widh, ht);
g.drawSting(‘Length swidth, xcor+width, ycors20);
)

public simple1 (Stringl strint] blength)
¢

button = new JBution('Ga Back);
add('South, bution);

names=str,

widthan=blength;

setSize(650, 550

setvisibleirue); H
)

¢
ar add(stin nexToken0);

Redundancycheck [

[Due to redundant Packets:Access Deni
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern

view |[itss |~

Deletel

Close

Figure 15: Redundancy Enable Signal

[image: image16.png]Packet from 158

ot [l

¢

addC Sout
names=str,
widthan=blength;
setSize(650, 550
setvisibleirue);

)

¢

)

button = new JBution('Go Back);
button);

ar add(stin nexToken0);

itar contains (buffadd)

public simple1 (Stringl strint] blength)

il I

0 receiver 192.168.1.57 is dropped

Redundancycheck [

[Due to redundant Packets:Access Deni
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern
IDue to redundant Packets:Access Dern

View

itss

Detete

Close

Figure 16: Throttles Drops The Packets & The Access is Denied to The Attacker

[image: image17.png][=T

Enter Receiver Name ifar.contains(buffaddr))
[HTT T A— S appendlo e 35910
croosarie | Send | s

Close | 2989 }

oo -

public static void mainString argl)

® assail O Normal ¢
new getmsg10;

)

Figure 17: Throttle Denying Access to the Attacker
V. Conclusions

In this paper, a server-centric approach for protecting a server system under DDoS attacks. The approach limits the rate at which an upstream router can forward packets to the server; so that the server exposes no more than its designed capacity to the global network. In allocating the server capacity among the upstream routers, we studied a notion of level- max-min fairness, which is policy-free and hence easy to deploy and manage. Throttling can regulate the server load to below its design limit, so that the server can remain operational during a DDos attack. Moreover, our implementation results so that throttling has low computation and memory overheads at a deployment router. Our results indicate that server –centric router throttling is a promising approach to countering DDos attacks. Our focus has been on DDos attacks in which attackers try to overwhelm a victim server by directing excessive volume of traffic to the server.

References

[1] B. Awerbuch and Y. Shavitt, "Converging to approximated max-min flow fairness in logarithmic time," in Proc. IEEE INFOCOM, San Francisco, CA, Mar. 1998.

[2] W. Fang and L. Peterson, "Inter-AS traffic patterns and their implications," in Proc. IEEE Global Internet Symp., Rio de Janeiro, Brazil, Dec. 1999.

[3] P. Ferguson and D. Senie, "Network Ingress Filtering: Defeating Denial of Service Attacks Which Employ IP Source Address Spoofing," IETF, RFC 2827, 2000

[4] Black hole Route Server and Tracking Traffic on an IP Network [Online]. Available: http://www.secsup.org/Tracking
[5] TCP SYN Flooding and IP Spoofing Attacks. CERT AdvisoryCA- 1996-2001. [Online]. Available: http://www.cert.org/

[6] Smurf IP Denial-of-Service Attacks. CERT Advisory CA-1998- 2001. [Online]. Available: www.cert.org/advisories/CA-98.01.html

