Proceedings of the International Conference , “Computational Systems and Communication Technology”

5TH MAY 2010 - by Einstein College of Engineering,

Tirunelveli-Tamil Nadu,PIN-627 012,INDIA

MPI-Style Web Services for Distributed Computing
 *Anu John J K , II M.E, CSE, PSNCET, Mail ID: anucek@yahoo.co.in
 **Mrs. M. Deepa Lakshmi M.E, Asst. Prof/CSE, PSNCET
Abstract—In this paper, we introduce MPI-style Web service (MPIWS), a novel service presented as a standard Web service but integrated with MPI programming technologies to allow Web applications to run in parallel over a loosely coupled distributed environment. MPIWS takes advantage of the SOAP communication protocol, and allows direct MPI-style communication among loosely coupled services. The MPI-style communication supported by MPIWS includes both point-to-point and collective communications. In this paper, point-to-point and collective communication operations are evaluated in comparison with mpiJava. The evaluation results demonstrate that although the overhead of SOAP messaging takes a toll on performance, MPIWS is generally comparable with mpiJava sending Object data types, especially for coarse-grain applications, and outperforms mpiJava in some cases.

1. INTRODUCTION
A workflow is a series of processing tasks, each of which operates on a particular data set and is mapped to a particular processor for execution. In a loosely coupled Web service environment, a workflow can itself be presented as a Web service, and invoked by other workflows. Web service standards and technologies provide an easy and flexible way for building workflow-based applications, encouraging the reuse of existing applications, and creating large and complex applications from composite workflows. In spite of the performance concerns of the SOAP messaging protocol, the use of Web service architectures to build distributed computing workflows for scientific applications has become an area of much active research. Recently developed workflow languages, such as Grid Services Flow Language (GSFL) have started addressing the problem of intercommunicating processes. GSFL provides the functionality for one executing Grid service to communicate directly with another concurrently executing Grid service. Although implementation details using OGSA notification ports in a subscriber/producer methodology are discussed in this paper, there is no enactment environment available to support GSFL. Another example is Message- Passing Flow Language (MPFL) which allows Web service communications to be described in XML. However, no enactment engine has been implemented so far. BPEL4WS is commonly used for composing WS-based scientific workflows but users are limited to applications with independent processes. In the case of a workflow with loops containing multiple independent tasks, the overhead in invoking these subtasks is incurred every iteration; in addition, any iterative data that is to be shared by these tasks must be passed to the service by a mediator. Fig. 1 shows a workflow implementing a loop of two independent subtask services; these services are connected by a mediator service to control the number of loop iterations and to control the data sharing between the two services. As an alternative to this scenario, Fig. 2 shows the loop implemented using MPI-style message-passing communication between the two services; this enables the services to be written in a way that they can process their own loop constraints and data sharing through loosely synchronous communication at each iteration. This alternative, as well as eliminating the need for the mediator service and rein vocation at every iteration, allows the use of collective communication techniques to improve the

efficiency of the data transfer; i.e., if there were eight parallel services in the loop, and the data to be shared were sent from all services to all other services, then each service could Broadcast its data. One example of this style of application is described in [4] where a set of Partial Differential Equation solvers is used to model an automotive engine heat flow problem. Each service is initialized to model a separate constituent part constructed from a different mater al with different thermal characteristics. At each time iteration, the boundary conditions between the component parts must be passed to the neighbouring service. Another example is a distributed molecular dynamics model, where a number of particles are divided between services involved in the simulation. Again, at each time interval in the simulation, the velocities of each particle must be shared between all the services, In this paper, we extend and update the work of our previous paper to investigate the potential and suitability of using a Web service infrastructure to support parallel applications that require MPI-style message passing. We look at various methods and tools that can be used to implement these message exchange patterns (MEPs) and assess the suitability of previous work, within the Web service framework, for this emerging workflow use. We then propose an implementation for MPI-style Web services (MPIWS) and present performance results comparing MPIWS against mpiJava a leading high-performance Java implementation .Finally, we examine a molecular dynamics simulation that has been adapted to use MPIWS and discuss its performance. [image: image1.png]

Fig. 1. A workflow showing parallel services S1 and S2 performing an iterative task by looping via a mediator service S3
[image: image2.emf]
Fig. 2. A workflow showing parallel services S1 and S2 performing an iterative task by looping internally sharing data directly with each other
[image: image3.emf]
Fig. 3. Extending the use of parallel executing services to allow MPIStyle direct message passing between concurrently executing service invocations. The thin arrows indicate the request-and-response service invocations and the thick arrows indicate direct communication between web services.

2 .DESIGN OF MPI-STYLE WEB SERVICES

The challenge is to design a tool that combines the tightly coupled programming approach of MPI with the distributed, loosely coupled architecture of SOAP-based Web services. To do this, we need to adhere to Web service and SOAP messaging standards while providing an efficient form of communication between services. MPIWS are designed to allow for direct communication between concurrently executing Web services.

2.1. MPI-Style Web Services

The interface at the application layer is a Web service interface to allow MPIWS services to be invoked in the same way as any other Web service . It includes only one method, init(), which initiates a service invocation instance for executing the subtask coded within the init() method. The internal MPI- operation layer provides an interface to a collection of MPI communication methods, including send, receive and collective communication operations such as broadcast, gather, and barrier. These methods are used internally within the init() method in a similar style to an MPI application. The methods provided by the internal MPI-operation layer do not perform direct communications themselves— this is done through the interface provided by the direct communication layer. The direct-communication interface provides methods to allow the direct communication among services. Similar to the application layer interface, the methods at the direct-communication layer conform to Web service standards so that SOAP messaging is used in the direct communication among services. There are two direct-communication methods currently supported: . store() receives message data and stores them locally. . bstore(), similar to store(), but to support binomial broadcast communications.

2.2. Communication Domains

A communication domain is a collection of service instances working for a particular service-composite application. . The binding information includes. a communication domain ID;. the rank value for the particular service instance;. a list of service end point references. Each of the service end point references is associated with a particular rank value, it allows the service to perform direct message passing with other services in the same communication domain.
2.3 Communication

[image: image4.png]

Fig.4. Example of services working for multiple communication domains.

[image: image5.png]

Fig.5.MPI-style Web services point-to-point send architecture.
Each SOAP message received includes

. the message data required by the receiving service instance, rank 3;

. the message sequence number, #5;

. the communication domain ID, 3303;

. the fromRank, the rank value of the sending service instance, rank 2.

2.4 Collective Communications Design

Collective communication is used within the distributed computing environment to enhance the performance of message passing on a domain level. It provides faster communication for applications that require domain-level systematic communication operations. The inclusion of supporting collective communications in MPIWS is essential to demonstrate the potential efficiency of a WS-based approach for scientific computing. To this end, we have implemented a number of collective communication operations including: Broadcast, Gather, and Barrier. Collective operations are more complex than point-to point communication and require extra processing such as retransmitting messages, combining data into a larger data set or appending data to existing data. In our design, the collective operations are built by extending the implemented point-to-point operations and adding the extra processing required for collective communication. These additions are implemented in both the MPI-operations layer and in the direct-communications layer.

2.4.1 Send Receive

The send Receive operation is a very simple combination of a send from one service node to a second service node, while at the same time a receive from that second service node is taking place. This operation utilizes the duplexity of the communications network. MPIWS implements a send Receive operation by using threads to perform each of the basic point-to-point operations.

2.4.2 Broadcast

The easiest example of true collective communication to envisage is the broadcast operation. The simplest way to perform a broadcast operation is for the broadcasting rank, commonly called the root, to repeatedly send the message to all other ranks in the communication domain. Serial Broadcast is a straightforward approach in which the root creates the message and sends it serially to each rank in turn.

2.4.3 Gather

The Gather collective operation retrieves data from all non root service nodes and arranges it in an array at the root service. The resulting array is of size equal to the number of service nodes available in the communication domain, and each cell of the array contains the data sent from the service node with rank that equals the index value of the cell . In MPIWS, two implementations of the Gather method have been implemented and tested: the serial version of the gather method and the binomial version of the gather method. Both versions are implemented by using the point-to-point primitive operations: send and receive.

2.4.4 Barrier

The barrier operation provides a synchronization mechanism for MPI applications. It involves no data transmission, but provides a guarantee that each service node in the communication domain has reached a particular point during its execution. There are many ways of implementing the barrier operation, and a good reference to many of these methods can be found in [24]. The method we choose uses the collective operations that have already been implemented: a gather operation followed by a broadcast operation. The method was chosen because it involves the least number of consecutive sends compared to other methods, implemented:

3. EVALUATION

Web services can perform well compared with other message passing implementations, such as mpiJava, over a loosely coupled, distributed network. MpiJava also has the ability to transfer data as Objects, allowing a more object-oriented approach to MPI-Style message passing, this allows like for like comparison of the two systems. The evaluation has been split into two parts: evaluation of point-to-point operations, and evaluation of collective communication operations.

3.1 Point-to-Point Communication
The evaluation tests focus mainly on the speed aspect of the communication implementations and MPIWS services are

tested against mpiJava. Many benchmark suites have been devised and put forward as definitive parallel computing benchmarks and many of these are designed to test the underlying hardware or the collective communications features of the message-passing tools. We have chosen tests that specifically target the performance of the message passing tools. The Ping Pong test is one of the most popular tests that is used to provide a simple bandwidth and latency test for point-to-point communications. Getov et al. used a number of variations of the Ping Pong test to

compare the performance of MPI and java-MPI. Foster and Karonis also used
the test to evaluate MPICH-G, a grid- enabled version of MPI. Here, we have chosen two variations of the Ping Pong tests: the standard Ping Pong test and the Ping_ Pong test

[image: image6.png]

3.2 Collective Communication

For the evaluation of collective communication operations, we have tested

both serial and binomial versions of the broadcast, gather, and all Reduce operations against mpiJava. In the broadcast and All Reduce tests, a barrier operation is performed before the start of the operation. The time calculation starts after the barrier operation is completed. The broadcast operation ends when all the service nodes
received the broadcasted message and the broadcasting service was notified. The notification is performed by a report-to-root operation which is effectively a minimal data gather.
4. Application MolDyn

MolDyn is a piece of molecular dynamics simulation code provided by the Java Grande Forum with the MPJ Version 1.0 source code. It is used as an evaluation benchmark MolDyn is also a typical high-performance computing application. and there are many examples of production grade code available These codes use a variety of communication architectures to achieve their goals but for the purposes of the evaluation of MPIWS, MolDyn will

suffice. The communications architecture

involves the allReduce operation on both the three force arrays and on three energy variables, plus three barrier synchronizations per iteration. The benchmark test performs 50 iterations and the size of the particle array varies from 2,000 to 32,000 particles.

Fig. 6. Scenarios of PingPong, Ping_Pong, and
Matrix Multiplication tests. An arrow represents

a portion of the matrix being sent from one

 processor to another

5.CONCLUSIONS
Direct-communication support and MPI-Style message passing among Web services provide the ability for MPI-style applications to fully utilize the modularity of the Web services environment. It could become the building block for the future development of execution environments for WS- and XML-based workflow languages, such as MPFL, that support WS-composite scientific applications. From the tests undertaken, we have discovered that despite using MTOM, a fast SOAP mechanism using SOAP with attachments, the overhead of SOAP messaging is significant enough to affect the performance of MPIWS when message sizes are small. However, when the message sizes reach a certain threshold, MPIWS runs at a similar, or even faster, speed compared with mpiJava passing similar Objects. It is also found that the intermessage pipe effect, a noticeable feature in applications that use consecutive MPIWS sends as well as those with a distribution of receiving processors, contributes positively to the performance of MPIWS. The test results for the collective communication operations confirm that MPIWS is a practical and efficient way to integrate collective communications techniques into a Web services environment, although not all of the collective operations (especially the barrier operation) are as efficient as could be hoped. The benefits to the efficiencies within workflow communication have also been assessed, and it has been shown that the use of collective communication techniques within the Web services architecture can significantly improve the efficiency of suitable applications such as the MolDyn simulation Code. From the above observations, we conclude that using MPIWS for WS-workflow applications requiring MPI message passing is potentially a practical and efficient way of distributing coarse-grained parallel applications. Further work on this research would be to increase the functionality of MPIWS to more fully implement the MPI standard, including the use of message tags, and the ability to receive from “Any Source” as well as implementation of more of the collective communication operations. A longer term goal is to integrate MPIWS with MPFL to produce an execution environment for MPI-Style workflows.
REFERENCES

[1] S. Krishnan, P. Wagstrom, and G.V. Laszewski, “GSFL: A Workflow Framework for Grid Services,” technical report, Argonne Nat’l Laboratory, 2002.

[2] Y. Huang and Q. Huang, “WS-Based Workflow Description Language for Message Passing,” Proc. Fifth IEEE Int’l Symp. Cluster Computing and Grid Computing, 2005.

[3] A. Akram, D. Meredith, and R. Allan, “Evaluation of BPEL to Scientific Workflows,” Proc. Sixth IEEE Int’l Symp. Cluster Computing and the Grid (CCGRID ’06), pp. 269-274, 2006.

[4] M. Mu and J.R. Rice, “Modeling with Collaborating PDE Solvers—Theory and Practice,” Computing Systems in Eng., vol. 6, no. 2, pp. 87-95, http://www.sciencedirect.com/science/article/B75C5-49V61XR-1K/2/0540534724f2a88fb59d15366a3a03b5, 1995.

[5] I. Cooper and Y. Huang, “The Design and Evaluation of MPIStyle Web Services,” Proc. Int’l Conf. Computational Science—Part 1 (ICCS ’08), M. Bubak, G.D. van Albada, J. Dongarra, and P.M.A. Sloot, eds., pp. 184-193, http://www.springerlink.com/ content/n74287q451wgl504, 2008.

[6] B. Carpenter, “Java for High Performance Computing: MPIBased Approaches for Java,” Pervasive Technology Labs, Indiana Univ., Internet Presentation, http://www.hpjava.org/courses/ arl/lectures/mpi.ppt, Aug. 2007.

[7] M. Baker, B. Carpenter, and A. Shafi, “An Approach to Buffer Management in Java HPC Messaging,” Lecture Notes in

Computer Science, vol. 3992/2006, pp. 953-960, Springer, May 2006.

[8] W. Gropp, Tutorial on MPI: The Message-Passing Interface, http:// www.new-npac.org/projects/cdroms/cewes-1998-05/reports/ gropp-mpi-tutorial.pdf, 2009.

[9] A. Kut and D. Birant, “An Approach for Parallel Execution of Web Services,” Proc. IEEE Int’l Conf. Web Services, pp. 812-813, June 2004.

[10] D. Puppin, N. Tonellotto, and D. Laforenza, “How to Run Scientific Applications over Web Services,” Proc. Int’l Conf. Parallel Processing (ICPP ’05) Workshops, pp. 29-33, 2005.

