Proceedings of the International Conference , “Computational Systems and Communication Technology”

5TH MAY 2010 - by Einstein College of Engineering,

Tirunelveli-Tamil Nadu,PIN-627 012,INDIA

MINING OF SEQUENTIAL PATTERNS WITH A PROGRESSIVE DATABASE EFFICIENTLY

D. Hepsibha Pearl 1, Dr.S.Selvan2
1 Student II M.E.CSE, 2 Principal,

Francis Xavier Engineering College, Tirunelveli
puahpearl@gmail.com,
Abstract:- In this paper, a new algorithm using fast version of Pisa, FastPisa is proposed to mine the frequent sequences efficiently which requires less memory space than the existing algorithms. FastPisa discovers sequential patterns in defined time period of interest (POI). FastPisa utilizes a progressive sequential tree to efficiently maintain the latest data sequences and delete obsolete data and patterns accordingly. Fast Pisa only inserts elements which contain a single item into Progressive Sequential Tree. The number of nodes stored in PS-Tree is reduced significantly in FastPisa, thus consuming less memory space than Pisa by orders of magnitude.

Index Terms:Progressive sequential pattern

1. Introduction:

There have been many recent research works on data mining area on discovering interesting but unknown knowledge from a
large amount of data. The data mining techniques include association rules mining, classification, clustering, mining time series, and sequential pattern mining, to name a few [3], [4], [5]. Among others, finding sequential patterns has attracted a significant amount of research attention. Sequential pattern mining was first addressed in [1] as the problem: “Given a sequence database, where each sequence consists of a list of ordered item sets containing a set of different items, and a user defined minimum support threshold, sequential pattern mining
is to find all subsequences whose occurrence frequencies are no less than the threshold from the set of sequences.” The formal definition is as follows.
Definition 1. Let I = {x1, x2,…, xn} be a set of different items. An element e, denoted by (xixj….), is a subset of items cI which appear at the same time. A sequence s, denoted by < e1,e2,…,em > , is an ordered list of elements. A sequence database Db contains a set of sequences, and |Db| represents the number of sequences in Db. A sequence α=<a1,a2,…,an> is a subsequence of another sequence β =< b1,b2,..., bm > if there exist a set of integers, 1≤ i1 < i2 < ….< in ≤m, such that a1 cbi1, a2 cbi2,… and an cbin. The sequential pattern mining can be defined as “Given a sequence database Db and a user-defined minimum support min sup, find the complete set of subsequences whose occurrence frequencies ≥ min sup * |Db|.”

Database mining is motivated by the decision support problem faced by most large retail organizations. Progress in bar-code technology has made it possible for retail organizations to collect and store massive amounts of sales data, referred to as the basket data. A record in such data typically consists of the transaction date and the items bought in the transaction. Very often, data records also contain customer-id, particularly when the purchase has been made using a credit card or a frequent-buyer card. Catalog companies also collect such data using the orders they receive. We introduce the problem of mining sequential patterns over this data. An example of such a pattern is that customers typically rent “Star Wars", then “Empire Strikes Back", and then “Return of the Jedi". Note that these rentals need not be consecutive. Customers who rent some other videos in between also support this sequential pattern. Elements of a sequential pattern need not be simple items. Fitted Sheet and at sheet and pillow cases", followed by comforter", followed by drapes and rules" is an example of a sequential pattern in which the elements are sets of items.

The assumption of having a static database may not hold in practice. The data in real world changes on the fly. Moreover, finding sequential patterns in an incremental database may cause lack of interest to the users. When sequential patterns are generated, the newly arriving patterns may not be identified as frequent sequential patterns due to the existence of old data and sequences. Even worse, the obsolete sequential patterns that are not frequent recently may stay in the reported results. The incremental mining algorithms do not consider the deletion of the obsolete data from the sequence database. That is, these works are not applicable to a progressive database. It is noted that users are usually more interested in the recent data than the old ones. However, if a certain sequence does not have any newly arriving elements, this sequence will still stay in the database and undesirably contribute to |Db|. Therefore, when new sequential patterns are generated, the new patterns which appear frequently in the recent sequences may not be considered as frequent sequential patterns because |Db| is never reduced. In view of this, the infrequent sequential patterns whose timestamps are obsolete should be removed. Sequential pattern mining with a progressive database is widely used in many fields. For example, prediction of prefetching data to a mobile user on the wireless gateway is an essential application [2], [9], [10]. Whenever a mobile user asks an item from a wireless gateway, the prefetching system decides which other items the mobile user may want. By an accurate and predictive mechanism, the prefetching system can significantly improve the query latency to mobile users. In [6] and [7], Pandey et al. have proved that prefetching through the web log data of dynamic real-time rules will be more precise than static usage log on the web server. In addition, online link recommendation in adaptive hypermedia educational system is based on the mining results of users’ recent sequential queries [34]. The applications mentioned above are suitable to apply progressive sequential pattern mining techniques.

2. Pisa:

When sequential patterns are generated, the newly arriving patterns may not be identified as frequent sequential patterns due to the existence of old data and sequences. In practice, users are usually more interested in the recent data than the old ones. Sequential pattern mining with a progressive database capture the dynamic nature of data addition and deletion. Progressive concept, progressively discover sequential patterns in recent time period of interest.
The progressive sequential pattern mining deals with a progressive database, which not only adds new data to the original database but also removes obsolete data from the database. The sequential pattern mining with a static database finds the sequential patterns in the database in which data do not change over time. On the other hand, the sequential pattern mining with an incremental database corresponds to the mining process where there are new data arriving as time goes by (i.e., the sequences database is incremental).

For the sequential pattern mining with a progressive database, new data are added into the database and obsolete data are removed simultaneously. Therefore, one can find the most up-to-date sequential patterns without being influenced by obsolete data. It is noted that the sequential pattern mining with a static database and with an incremental database are both special cases of the progressive sequential pattern mining. If the obsolete data are not deleted from the database, the proposed algorithms for the progressive sequential pattern mining can solve the incremental sequential pattern mining problem. In addition, if the database does not have new data and does not delete obsolete data, the progressive sequential pattern mining algorithm can also deal with the static sequential pattern mining problem. Fig1 shows an example database.
[image: image1.emf]
 Fig1: An example database

Progressive mInning of Sequential patterns, PISA takes the concept of time period of interest (POI) and Progressive Sequential tree (PS-Tree).

Definition 2. POI is a sliding window, whose length is a userspecified time interval, continuously advancing as the time goes by. The sequences having elements whose timestamps fall into this period, POI, contribute to the |Db| for current sequential patterns. On the other hand, the sequences having only elements with timestamps older than POI should be pruned away from the sequence database immediately and will not contribute to the |Db| thereafter.

Once the POI is taken into account, the sequences that do not have any newly arriving data can be deleted, and the |Db| of recent sequential patterns can, thus, be treated correctly. Consequently, obsolete sequential patterns will be pruned away rapidly. Hence, users can identify the latest information without influences of old data and recognize the most up-to-date sequential patterns.

Definition 3. PS-tree represents elements in the sequence, based on the sequence IDs and timestamps recorded in the nodes and the newly arriving data of the progressive database at each timestamp. PS-tree not only stores the elements and timestamps of sequences in each POI but also efficiently accumulates the occurrence frequency of every candidate sequential pattern at the same time.

The height of PS-tree is bounded by the length of POI, and PS-tree combines the same sequential patterns of all sequences together. By changing Start time and End time of the POI, Pisa can easily deal with a static database or an incremental database as well.
3. Fast Pisa:

Pisa with a very slight approximation, enhance the performance of Pisa. For every arriving element with more than one item, Pisa needs to insert all combinations of elements into PS-tree. For example, when we receive an element having (ABC), all combinations of elements are A, B, C, (AB), (AC), (BC), and (ABC). The number of all combinations of elements for an arriving element having |T| items is 2|T| - 1 and these elements will induce huge computation and large space in the following timestamps during each POI. In view of this, we employed a slight approximation to speed up the algorithm and reduce the memory usage.
4. Complexity Analysis:

Pisa combines the same elements of different sequences in the same nodes. The similarity ratio of the elements in a pair of sequences is denoted by Rseq. That is, Rseq = Nsame/N, where Nsame is the number of common elements in these two sequences. Then, the number of different elements in a sequence from the elements in the other sequence is N * (1 - Rseq). The number of different elements in the kth sequence from the elements in the other k - 1 sequences is N *(1 - Rseq)k-1. The total number of different elements in all of the |D| sequences is, thus,
N +N *(1 _ Rseq) +N * (1 - Rseq)2 +….. + N* (1 - Rseq)|D|-1 = N *(1 - (1 - Rseq)|D|) /Rseq

Considering the tree structure, the average number of nodes stored in Pisa is, thus,

(L + (L - 1) + (L - 2)+……..+1) * N *(1- (1 - Rseq) |D|)/Rseq
Therefore, the average number of node is

NPisa = (L(L + 1))/2 * (1 - (1 - Rseq) |D|)/Rseq *(P *(2|T| - 1))L ----------------------(1)
In addition to the merit of requiring a smaller number of elements needed to be stored in PS-tree, Pisa utilizes an efficient traversing method to traverse PS-tree while dealing with each new element and comparing to the old elements. Therefore, the execution time of Pisa can be much better than the one of DirApp. FastPisa reduces the number of combinations for each new element, which is stored in PS-tree. Thus, the average number of different combinations of elements appearing in the whole POI in one sequence becomes (P * (|T| - 1))L. Hence, the average number of nodes stored in fast Pisa is
NFastPisa = (L(L+ 1))/2*(1 - (1 - Rseq) |D|)Rseq* (P * (|T| - 1))L ---------------------(2)
According to (1) and (2), FastPisa does save lots of space from Pisa and, hence, outperforms the comparative algorithms in execution time.

5. Conclusion:

If we insert only individual items A, B, and C instead of all combinations of elements into PS-tree, the sequential patterns formed by these elements with only a single item can still be generated. Therefore, users will not lose any information of these elements with only a single item. For example, assume there will be sequential patterns XA, XB, XC, and X(AB), where X is the prefix set of elements of these patterns. According to the slight modification, the sequential patterns formed by the elements with only a single item, XA, XB, and XC can still be generated. Users can get the information that A, B, and C appear following X frequently. The only pattern which cannot be found is X(AB). That is, the only information loss is that the users are not able to know whether A and B appear together following X frequently or not. In practice, although, the numbers of combinations of elements in candidate sequential patterns are quite large, there are seldom frequent sequential patterns whose elements contain more than one item at the same time. Therefore, the information loss is marginal. Specifically, assume the length of POI is L. From the design of PS-tree, the cost of space and time can be reduced by a factor of (2|T| - 1)L-|T|L, which is about in orders of 10 to 100 times in practice, by this approximation.

6. References:

1. R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proc. 11th Int’l Conf. Data Eng. (ICDE ’95), pp. 3-14, Feb. 1995.

2. M.-S. Chen, J. Han, and P.S. Yu, “Data Mining: An Overview from Database Perspective,” IEEE Trans. Knowledge and Data Eng., vol. 8, no. 6, pp. 866-883, Dec. 1996

3. A. Balachandran, G.M. Voelker, P. Bahl, and P.V. Rangan, “Characterizing User Behavior and Network Performance in a Public Wireless LAN,” Proc. ACM SIGMETRICS Int’l Conf. Measurement and Modeling of Computer Systems (SIGMETRICS ’02), June 2002

4. U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurasamy, “Advances in Knowledge Discovery and Data Mining,” MIT Press,1996

5. J. Han and M. Kamber, Data Mining: Concepts and Techniques. Morgan Kaufmann, 2000.

6. A.B. Pandey, J. Srivastava, and S. Shekhar, “Web Proxy Server with Intelligent Prefetcher for Dynamic Pages Using Association Rules,” Technical Report 01-004, Univ. of Minnesota, Jan. 2001

7. A.B. Pandey, R.R. Vatsavai, X. Ma, J. Srivastava, and S. Shekhar, “Data Mining for Intelligent Web Prefetching,” Proc. Workshop Mining Data Across Multiple Customer Touchpoints for CRM (MDCRM ’02), May 2002.

8. C.Romero, S.Ventura, J.A.Delgado, & P.D.Bra, “Personalized Links Recommendation Based on Data Mining.In Adaptive Educational Hypermedia Systems,” Proc.2nd EuroConf. TechEnhancedLearning(EC TEL’07)

9. Q. Yang and H.H. Zhang, “Web-Log Mining for Predictive Web Caching,” IEEE Trans. Knowledge and Data Eng., vol. 15, no. 4, pp. 1050-1053, July/Aug. 2003

10. Q. Yang, H.H. Zhang, and T. Li, “Mining Web Logs for Prediction Models in www Caching and Prefetching,” Proc. Seventh ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining (KDD’01), pp. 473-478,Aug. 2001

