Proceedings of the International Conference , “Computational Systems and Communication Technology”

5TH MAY 2010 - by Einstein College of Engineering,

Tirunelveli-Tamil Nadu,PIN-627 012,INDIA

Data Incorporation using Web Services
P.Chidambaranathan #1 N.Venkatesan #1 S.Ravi #1 J.Vasavi #2
#1 St.Peter’s Engineering College, Chennai.

#2 Prof. Dhanapalan College for Women, Chennai.

cdm.nathan15@gmail.com, pnvenkatrenu@gmail.com, ravi.vidya@gmail.com, vaascdm@yahoo.co.in

ABSTRACT - Web service is the primary choice of technology among integration designers. This paper introduces the programming standards associated with Web Services and provides an example of how Web Services can be used to unlock heterogeneous business systems to extract and integrate business data. We provide an introduction to the problems and research issues encountered when applying Web Services to data integration. We show that Web Services will make the development of systems for aggregation both faster and less expensive to develop. System architecture for Web Services based aggregation is presented that is representative of products available from software vendors today. These include context mediation, trusted intermediaries, quality and source selection, licensing and payment mechanisms and systems development tools.
Keywords - XML, SOAP, WSDL, UDDI, EAI.

I. INTRODUCTION
 Web Services can be viewed as programming model for extracting and integrating data from heterogeneous information systems. It offers Significant advantages over currently available methods and tools. Because the Web Services model is based on a new set of standards (e.g., XML, SOAP, WSDL, UDDI) it promises to enable the aggregation of multiple data sources once these standards are supported by the information systems underlying each business process. These standards are being widely adopted in industry as evidenced by Microsoft’s .NET initiative and Sun’s Java APIs for XML (JAX) extensions to the Java 2 Platform, Enterprise Edition (J2EE). This paper begins with an example illustrating the power of Web Services as a data integration approach in a telecommunications company. It goes on to illustrate how such an application of Web Services is really a form of aggregation. We provide a working definition of aggregation and examine the application of existing aggregation Research to Web Services.

II. WEB SERVICES AND AGGREGATION

 Research on information aggregation has been going on for a long time, but with the advent of the Internet there has been a new focus on the entities that aggregate information from heterogeneous web sites often referred to as “Aggregators”. Much of this research focuses on the semantic and contextual challenges of aggregation.

 Web Services do, however, solve a number of the technical challenges faced by early Internet aggregators. These Aggregators had to overcome technical challenges related to integration of data source sites that were not originally developed with the intent of supporting aggregation [7]. Screen scraping and “web farming” techniques were developed where the Aggregator accessed the source site as if it were a user and parsed the resulting Hyper Text Markup Language (HTML) to extract the information being aggregated.

 The Web Services Paradigm solves some of the technical integrations challenges by standardizing the infrastructure for data exchange. However, the Web Services paradigm also assumes that application components are designed with the intention of being aggregated. This assumption, that disparate data sources are going to be designed and implemented with the intention of being aggregated, raises a whole new set of challenges. To begin exploring the challenges posed by the Web Services paradigm for aggregation, we propose the following definition that encompasses both information and processes aggregation.

 An Aggregator is an entity that:

· Transparently collects and analyzes information from different data sources;

· Resolves the semantic and contextual differences in the information;

· Addresses one or more of the following aggregation purposes / abilities:

1) Content Aggregation

2) Comparison Aggregation

3) Relationship Aggregation

4) Process Aggregation

A. Aggregation Intentions / Ability
 Aggregation is a special kind of association that specifies a whole/part relationship between the aggregate (whole) and a component part [6]. When compared to an ordinary association, some distinguishing characteristics of aggregation include: aggregation is an asymmetric relationship, aggregation is a transitive relationship, aggregation implies stronger coupling, and behavior (copy, delete, etc.) is normally propagated across an aggregation.

 From this definition, we see that not every system designed to integrate data can be called an Aggregator. To be an Aggregator, a system must provide certain capabilities, as summarized here.
TABLE I

AGGREGATION TYPES
	Aggregation

Ability
	Definition
	Example

	Content

Aggregation
	Gathers data related to a specific topic and provides value-added analytics based on relationships Across multiple data sources.
	Employee Benefits Portals where an employee can get access to all his benefits information

	Comparison

Aggregation
	Within a particular business domain identifies the optimal transaction based on criteria supplied by the user
	Shop bots that compare product prices

	Relationship

Aggregation
	Provides a single point of contact between a user and several business services
	Aggregation of all financial accounts

	Process

Aggregation
	Managing a business process that requires coordination across a variety of services
	B2B and EAI tools that provide data aggregation to link multiple business processes

B. Aggregation Environment
 Aggregation types get applied
 in different settings and have more or less relevance depending on the setting. Three common settings where aggregation is employed are:

· Intra-Organizational: To integrate systems and data within an organization. Process Aggregation is particularly important here where it is often referred to as Enterprise Application Integration (EAI).

· Inter-Organizational: To integrate systems and data across multiple organizations. All aggregation capabilities are important in this context. Process Aggregation is used in many forms of Business-to-Business (B2B) communication such as Supply Chain Management. Many of the Business to Consumer (B2C) Aggregators employ Content Management, Comparison and Relationship capabilities.

· Market/Exchange: To create an independent organization and systems to facilitate commerce among members. Process Aggregation, Content Management and Comparison capabilities are particularly important in this context.

III. WEB SERVICES STANDARDS – CURRENT SHAPE
 The Web Services model provides a new set of standards and technologies that facilitate an organization’s ability to integrate data from internal heterogeneous systems (e.g., Enterprise Application Integration (EAI)) or integrate data from business partners (e.g., Supply Chain Management and other Business-to-Business (B2B) type applications). These types of systems can be characterized as various types of aggregators.

 For our purposes, we define a Web Service as an application interface that conforms to specific standards in order to enable other applications to communicate with it through that interface regardless of programming language, hardware platform or operating system. A Web Service interface complies with the following standards:

 XML (eXtensible Markup Language) documents are used for data input and output. It is a flexible way to create common information formats and share both the format and the data on the World Wide Web and intranets.

 HTTP (Hypertext Transfer Protocol) or a Message Oriented Middleware (MOM) product is the application protocol. It is an application layer network protocol built on top of TCP. HTTP clients (such as Web browsers) and servers communicate via HTTP request and response messages. Message-oriented middleware is infrastructure focused on sending and receiving messages that increases the interoperability, portability, and flexibility of an application by allowing the application to be distributed over heterogeneous platforms.
 SOAP (Simple Object Access Protocol10) is the standard specifying how XML documents are exchanged over HTTP or MOM. It is a protocol specification for exchanging structured information in the implementation of Web Services [9].
 WSDL (Web Services Description Language) is used to provide a meta-data description of the input and output parameters for the interface. A WSDL definition describes how to access a web service and what operations it will perform [12].
 UDDI (Universal Description Discovery and Integration) is used to register the Web Service. It is a directory model for web services. UDDI is a specification for maintaining standardized directories of information about web services, recording their capabilities, location and requirements in a universally recognized format [8].
 Although there is no single standard for XML document structure, many Web Services that are designed to work together will standardize on a particular set of tags or document structure. Various industry groups and standards bodies are publishing XML standards for use in particular contexts. One example that is building support among technology vendors is ebXML.

 Standards Used For Aggregation
 Web services are a set of emerging standards that enable interoperable integration between heterogeneous IT processes and systems. We can think of them as a new breed of Web application that is self-contained and self-describing, and that can provide functionality and interoperation ranging from the basic to the most complicated business and scientific processes.
Web service standards supported WSDL, UDDI and SOAP.

Fig. 1 illustrates a generic example of how Web Services standards are employed for Aggregation.

[image: image1]
Fig. 1 Aggregation with Web Services
 Within each division, programmers develop a Web Service that can receive and process a query about the network provisioning available [1]. The interface for each division’s Web Service is published using WSDL and registered in a UDDI Registry. The programmers working on the Global Provisioning System can use the UDDI Registry to look up the Web Services that the divisions have made available. From there, they can access the WSDL for each web service that specifies its inputs and outputs.

IV. AGGREGATOR ARCHITECTURE
 An Aggregator combines data from a variety of sources to create and maintain a new data source supporting new business processes. A standard technical architecture is emerging for creating Aggregators, and is illustrated in Fig.2 Many commercial products are based on such architecture.

 The Reporting and GUI Access components of this architecture enable the aggregated data to be treated as a single data source and provides tools for querying it as such (e.g., SQL)[10]. The Event Handling and Workflow functionality provided by such platforms provides Process Aggregation that is referred to as Enterprise Application Integration (EAI).

Enterprise Application Integration is an integration framework composed of a collection of technologies and services which form a middleware to enable integration of systems and applications across the enterprise.
 Supply chain management applications (for managing inventory and shipping), customer relationship management applications (for managing current and potential customers), business intelligence applications (for finding patterns from existing data from operations), and other types of applications (for managing data such as human resources data, health care, internal communications, etc) typically cannot communicate with one another in order to share data or business rules. For this reason, such applications are sometimes referred to as islands of automation or information silos. This lack of communication leads to inefficiencies, wherein identical data are stored in multiple locations, or straightforward processes are unable to be automated. All the components below this are designed to leverage Web Services standards for data aggregation.
	Aggregated Data Access

	Analytics

	Transformation
(Semantic, Contextual, Syntactic)

	Connectivity

	Web Services
	Messaging
	Connectors

Fig. 2 Aggregation Platform
 In this scenario, the Aggregation Platform builds an aggregated image of the underlying data sources that can be accessed and queried through the “Aggregated Data Access” layer. Other layers in the technology stack perform the following functions.

 The Analytics component assembles divisional provisioning plans into a coherent whole removing data redundancy, resolving conflicts, and optimizing the resulting network structure. It is "the science of analysis". A simple and practical definition, however, would be how an entity (i.e., business) arrives at an optimal or realistic decision based on existing data.
 The Transformation component handles standardizing the context and semantics of the information contained in the XML provisioning documents received from local systems. For example, one system may represent bandwidth in bits per second, while another may use megabits per second. This transformation process is one component of business process aggregation that has not been standardized within the Web Services paradigm and is often one of the most difficult integration challenges to overcome. An XML transformation is designed specifically to transform an input document into an output document which satisfies the specific goal.
 The Connectivity Component uses the appropriate method for transmitting data between the divisional components and corporate system.
 A. Analytics
 The Analytics component extracts data elements from the XML documents exchanged with the Web Services and puts them into a data structure (e.g., relational database) that can be accessed by the Aggregated Data Access module perhaps as a type of data warehouse.
 Analytics also performs analysis that may be useful to decision making that is part of the business process. The Analytics component will run a model of projected end customer usage of that partner’s services to get a projected cost for doing business with that partner. In this manner, it is used by the Event Handling and Workflow module to manage a new business process.

B. Transformation
 The Transformation component transforms the incoming XML into a standard format with a shared semantics and syntax.
This transformation process is one component of business process aggregation that has not been standardized within the Web Services paradigm and is often one of the most difficult integration challenges to overcome.
C. Connectivity
 The Connectivity component handles the Web Services function calls using the standards discussed above (e.g., SOAP, XML, and WSDL). In addition, Aggregation architecture would typically provide two other methods for exchanging information with the sources being aggregated. One would be a messaging interface, employing something like IBM’s MQ Series for asynchronous communication that is intra organizational. The other would be a connector interface that provides synchronous connections with
intra organization enterprise computing platforms (e.g., SAP, PeopleSoft). Such connectors may be implemented using standards such as Java’s J2EE Connector Architecture [4].

V. NEW STAGES FOR AGGREGATION USING WEB SERVICES
 Aggregation has been going on long before Web Services standards emerged. What is new is the advent of universally accepted standards for accessing
information from mixed sources. These standards will have a profound impact on aggregation and on systems development in general.

Standards Make Developing Aggregation Solutions Easier
 The standards discussed in Section 3 make aggregation easier because they provide programmers with a common set of productivity tools to work with. Such tools allow developers to spend less time resolving data syntax issues and more time on semantic challenges. For example: Fast, easy to use XML parsers are available for a wide range of programming languages [3].
 HTTP has become a nearly universally available transport protocol. Where higher fault tolerance is required, standards, such as Java Message Service (JMS), are now available as a common interface to most MOM products.

 SOAP eliminates the need for developers to learn and work with Vendor’s proprietary data transport protocols. As it matures, most commercial MOM and data integration products are supporting SOAP. SOAP’s primary drawback is that, as a text-based protocol, it requires higher bandwidth than the proprietary binary Protocols used in many vendor solutions. This issue comes up primarily in high volume; transaction oriented messaging systems and is not as important for typical data aggregation solutions.
 Universal Description, Discovery and Integration (UDDI) is a directory service where businesses can register and search for Web services. It is a platform-independent framework for describing services, discovering businesses, and integrating business services by using the Internet. It is designed to be interrogated by Simple Object Access Protocol (SOAP) messages and to provide access to Web Services Description Language (WSDL) documents describing the protocol bindings and message formats required to interact with the web services listed in its directory.
 WSDL provides a standard form of documentation to developers who need to write code accessing multiple web services. This reduces the learning curve usually associated when dealing with APIs or other kinds of interfaces to multiple systems.

 Lastly, a standard architecture, as show in Figure 2, enables the aggregation problem to be broken down into component parts that can then be “plugged in” to the architecture. For example, one could develop an analytics engine specifically designed for solving semantic issues in financial data aggregation and plug it in to one of the commercial products designed around
 this architecture. Again, this frees up developers to focus energy on the semantic challenges of financial information aggregation rather than the systems integration challenges of building custom data aggregation architecture.

VI. CONCLUSIONS
 The base is falling in place to enable great efficiencies of data integration, both internally within an organization (EAI) and externally across organizations (B2B). The ubiquity of the Internet, along with standardization on TCP/IP and HTTP create near universal connectivity. But connectivity is only the first step toward integration. Today, the Web Services paradigm promises
to standardize the syntax and protocols used for communication between
 applications. This is another important step toward facilitating data integration. However, it is important to remember that many challenges lie ahead. A good first step for researchers would be to implement a prototype aggregation system using commercially available software products and the architecture described in this paper. This would provide a concrete demonstration of the degree to which syntax and protocol challenges have been solved.

REFERENCES
[1] Alonso.G, Casati.F, Kuno.H and Machiraju.V, Web Services:

 Concepts, Architectures and Applications. Berlin: Springer-Verlag,

 2004.

[2] Anura Guruge (2004). Web Services: Theory and Practice. Elsevier

 Digital Press.

[3] Coyle F.P (2002), XML, Web Services, and the Data Revolution.

 Addison Wesley

[4] Coyle topley (2003), Java, Web Services in a nutshell. Addison Wesley

[5] James Snell, Doug Tidwell, Pavel Kulchenko, Programming Web

 Services with SOAP.

[6] Madnick, S. (2001). “The Misguided Silver Bullet: What XML will and

 will NOT do to help Information Integration”, Proceedings of the Third

 International Conference on Information Integration and Web-based

 Applications and Services (IIWAS2001), September 2001.

[7] Madnick, S., Siegel, M. Frontini, M., Khemka, S., Chan, ., and Pan,

 H., “Surviving and Thriving in the New World of Web

 Aggregators”, MIT Sloan Working Paper #4138, October 2000

[8] http://uddi.xml.org/
[9] http://xml.coverpages.org/soap.html
[10] http://searchsqlserver.techtarget.com

[11] http://www.ibm.com/developerworks/webservices/library/w-ovr/
[12] http://www.w3schools.com/WSDL/wsdl_uddi.asp
UDDI

HTML Source

Web Service #1

WSDL

Web Service #2

WSDL

Aggregator

